The effects of successive large mixed-severity wildfires on vegetation and fuels in the Sierra Nevada, CA

Scott Markwith¹
Asha Paudel¹
Michelle Coppoletta²
Kyle Merriam²
Brandon Collins³

- ¹ Florida Atlantic University,Department of Geosciences
- ² US Forest Service, Sierra-Cascade Ecology Program
- ³ US Forest Service and UC Berkeley Center for Fire Research and Outreach

Outline

- Wildfire and Vegetation Change
- Working Model
- Objectives/Hypotheses
- Study Area
- Field Methods
- Preliminary Analysis
- Discussion
- Future Directions
- Acknowledgements

http://www.soperwheeler.com/newsclips/managed-fire-worth-it/

Wildfire and Vegetation Change

- This is like someone from the west coast going to Florida to talk about hurricanes...
- You know the story...
 - 100+ years of fire suppression
 - Altered densities, composition, fuel loads
 - Climate change causing...
 - Increasing temperatures
 - Frequent fire weather
 - Reduced snowpack
 - Drier fuels
- The result...
 - Increased fire frequency
 - Larger fires
 - More and larger high-severity patches
 - Dramatic vegetation changes

Fites et al. 2012

Wildfire and Vegetation Change

- What do we assume is different about rapid successions of fires, i.e. reburns?
- We expect fire to reduce fuels, which results in...
 - Delay next fire for fuel buildup
 - Reduced severity in subsequent fires
 - Potentially stimulate regeneration
- Recent reburn patterns instead may...
 - Increase fuels after high-severity fire
 - Reduce high-severity return intervals
 - Increased probability of high-severity in reburns
 - Reduced regeneration potential

Fites et al. 2012

Working Model

Objective and Hypotheses

- Objective: Examine pre- and post-reburn vegetation and fuel loadings to test hypotheses about future successional trajectories under potential positive and negative feedback loops in montane mixed conifer forests.
 - **H1:** Positive feedback high severity fires promote dominance by shrubs and homogenization of vegetation structure and more high severity fires.
 - **H2:** Negative feedback low to moderate severity fires reduce surface fuels and small tree density, maintain overstory trees, and promote forest heterogeneity and structural diversity and more low to moderate severity.

Study Area

- Boundary of Plumas and Lassen National Forests along Feather River Canyon and Route 70.
- Mixed-severity fires in mixed conifer forests:
 - Storrie Fire 2000
 - Rich Fire 2008
 - Both reburned, Chips Fire 2012
 - 1 = 39%, 2 = 30%, 3 = 20%
- Overstory mortality high and large shrub patches common in high-severity patches after fires.

Field Methods

- Common Stand Exams.
- Minor variation among Storrie and Rich methods.
 - Variable radius in Storrie, fixed in Rich.
 - Seedlings >3 cm Storrie, all seedlings in Rich.

Field Methods

- Vegetation variables: shrub cover, seedlings, saplings (dbh), live and dead trees (dbh), fuels (all sizes).
- Physical variables: fire severity for each fire, slope, aspect, elevation, serpentine, groundcover (rock, soil, H₂O).

Preliminary Analysis: Seedlings/Saplings

Preliminary Analysis: Trees

Preliminary Analysis: Shrubs/Fuels

Discussion

- H1 (+ feedback).
 - Evidence of homogenization:
 - MC overstory gone
 - Shrub cover high
 - No saplings
 - Some seedlings present, low dens/divs
 - More future high-severity fire?
 - Probability not greater than initial fire?
 - Rotten fuels replaced by sound fuels.
 What effect on near-term reburns?

- H2 (- feedback).
 - Evidence of heterogeneity maintenance:
 - MC overstory persists after low-severity, but substantial loss after mod-severity.
 - Lots of seedlings and some saplings of all species.
 - Low shrub cover in low-severity, but quite high in mod-severity.
 - More low- to mod-severity fire?
 - FWD consumed in mod-severity reburn, but a lot of sound CWD created.
 - With elevated shrub cover, are mod-severity primed for future high-severity?

Future Directions

- Pre/Post-test ANCOVAs or Negative Binomial GLMs.
 - Dependent vars: species composition; tree, sapling and seedling density; tree basal area, shrub cover; and fine fuel loading and coarse woody debris.
 - Main effects: severity of the initial fire, the severity of the reburn, and the time interval between fires.
 - Continuous covariates: physical and vegetation variables (pre-reburn).
- Path Analysis/Structural Equation Model allows us to handle direct and indirect effects and feedback effects.

Acknowledgements. Questions?

- Acknowledgements:
 - Funding provided by the Join Fire Science Program and USFS PSW Research Station, Agreement #16-JV-11272167-053.
 - We would like to thank the following people for assistance with field sampling:
 - Crew Leader: Derek Stanton
 - Summer 2017 Crew
 - Nathan Silvis, Emily Purvis, Miko Fogarty, Tirian Shirley
 - Summer 2018 Crew
 - Paige Stephens, Emily Purvis, Keira Collins, Mark Goering, Jacob Levine, Andrew Salmon, Kathie Pauloski

