Publications:
Peer-reviewed journal articles: * indicates student advised
Moore H. E., Comas X., Briggs M. A., Reeve A. S., Slater L.D., 2024. Indications of Preferential Groundwater Seepage Feeding Northern Peatland Pools. Journal of Hydrology , 638, doi.org/10.1016/j.jhydrol.2024.131479
Swick, K., Johanson, E. N., Comas, X. A multiproxy analysis of modern environmental change within a cypress swamp forest, Collier County, FL, Discover Environment , 2:39; doi.org/10.1007/s44274-024-00065-x
Sirianni*, M., Comas, X., Shoemaker, B., and Anderson, F. 2023. Methane gas ebullition dynamics from different wetland vegetation communities in Big Cypress National Preserve (Florida) are revealed using a multi-method, multi-scale approach, Journal of Geophysical Research: Biogeosciences ; 128 (12), 2023JG007795.
Schröder, S., Corella, J.P., Pellicer, X.M., Rook, P, Kara, A., and Comas, X. 2023. Characterizing the heterogeneous nature of tufa mounds by integrating petrographic, petrophysical, acoustic and electromagnetic measurements; The Depositional Record , DEP2-2023-02-0011.
Sirianni*, M. J., Comas, X., Mount, G. J., Peirce, S., Coronado-Molina, C., Rudnick, D. 2023. Understanding peat soil deformation and mechanisms of peat collapse across a salinity gradient in the southwestern Everglades; Water Resources Research , doi: 10.1029/2021WR029683.
Zhang, C.; Brodylo, D.; Rahman, M.; Rahman, A.; Douglas, T. A. and Comas, X. 2022. Using an Object-based Machine Learning Ensemble Approach to Upscale Evapotranspiration Measured from Eddy Covariance Towers in a Subtropical Wetland; Science of the Total Environment, 831, 54969.
Comas, X., Slater, L., and Reeve, A. 2021. The Role of the Critical Zone Structure on the Hydrology and Pool Patterning of Boreal Peatlands, FastTIMES Technical articles, vol 26, 3, Climate Change and Critical Zone Geophysics, EEGS.
Palaparthi, J., Roberts-Briggs, T., Kumar Kali, P., Comas, X. Evaluating offshore sediment resources for non-traditional coastal restoration projects, USA. OCMA-D-21-00925R1, Ocean and Coastal Management .
Al-Halbouni, D., Watson, R. A., Holohan, E. P., Meyer, R., Polom, U., Dos Santos, F. M., Comas, X., Alrshdan, H., Krawczyk, C. M., and Dahm, T. 2021. Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study, Hydrol. Earth Syst. Sci. , 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021
Zhang, C., Brodylo, D., Sirianni, M. J., Li, T., Comas, X., Douglas, T. A., Starr, G. 2021. Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data, Remote Sensing of Environment , 262, https://doi.org/10.1016/j.rse.2021.112523.
Zhang, C., Comas, X., and Brodylo, D. 2020. A Remote Sensing Technique to Upscale Methane Emission Flux in a Subtropical Peatland. Journal of Geophysical Research: Biogeosciences, 125, e2020JG006002. https://doi.org/10.1029/2020JG006002
Sirianni*, M., and Comas, X. 2020. Changes in physical properties of Everglades peat soils induced by increased salinity at the laboratory scale: implications for changes in biogenic gas dynamics", Water Resources Research , 56, e2019WR026144, https://doi.org/10.1029/2019WR026144.
Chen, X., Comas, X., Reeve, A., and Slater, L. 2020. Evidence for glacial geological controls on the hydrology of Maine peatlands. Geology , https://doi.org/10.1130/G46844.1
Silvestri, S., Knight, R. J., Viezzoli, A., Richardson, C. J., Anshari, G. Z., Dewar, N. Flanagan, N. E., Comas, X. 2019. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: A comparison of airborne geophysics and an empirical topographic method. Journal of Geophysical Research: Earth Surface, 124 ; 2019JF005273
Gutiérrez, F., Carbonel, D., Sevil, J., Moreno, D., Linares, R., Comas, X., Zarroca, M., Roqué, C., McCalpin, J. P. 2019. Neotectonics and late Holocene paleoseismic evidence in the Plio-Quaternary Daroca Half-graben, Iberian Chain, NE Spain. Implications for fault source characterization, Journal of Structural Geology ,103933, doi: 10.1016/j.jsg.2019.103933.
Fabregat,, I., Gutiérrez, F., Roqué, C., Zarroca, M., Linares, R., Comas, X., Guerrero, J., Carbonel, D. 2019. Subsidence mechanisms and sedimentation in alluvial sinkholes inferred from trenching and ground penetrating radar (GPR). Implications for subsidence and flooding hazard assessment, Quaternary International, 525, 1-15, doi: 10.1016/j.quaint.2019.09.0080.
Comas, X.; Wright*, W.; Hynek, S.; Fletcher, R.; and Brantley, S. 2018. Understanding fracture distribution and its relation to knickpoint evolution in the Rio Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico) using landscape‐scale hydrogeophysics, Earth Surface Processes, and Landforms, doi: 10.1002/esp.4540.
Seo, Seokju; Perez, Gabriela; Tewari, Ketan; Comas, Xavier; Kim, Myeongsub. 2018. The catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Nature Scientific Reports. volume 8 (1), 11786.
Chen, X.; Comas, X.; Binley, A.; and Slater, L. 2018. A lumped bubble capacitance model controlled by matrix structure to describe layered biogenic gas bubble storage in shallow subtropical peat. Water Resources Research. 54 (8), 5487-5503.
Wright*, W., Ramirez, J., and Comas, X. Methane ebullition from subtropical peat: testing an ebullition model reveals the importance of pore structure. Geophysical Research Letters, 45 (14), 6992-6999, doi:10.1029/2018GL077352
Gutiérrez, F., Zarroca, M., Linares, R., Roqué, C., Carbonel D., Guerrero, J., McCalpin, J., Comas, X., Cooper, A. 2018. Identifying the boundaries of sinkholes and subsidence areas via trenching and establishing setback distances. Engineering Geology ,223: 255-268; doi:10.1016/j.enggeo.2017.12.0152017.
McClellan*, M., Comas, X., Benscoter, B., Hinkle, R., Sumner, D. 2017. Estimating belowground carbon stocks in isolated wetlands of the Northern Everglades Watershed, central Florida using ground-penetrating radar (GPR) and aerial imagery. Journal of Geophysical Research-Biogeosciences. 122 (11), 2804-2816, doi: 10.1002/2016JG003573.
Mustasaar*, M. and Comas, X. 2017. Spatiotemporal variability in biogenic gas dynamics and composition in a subtropical peat soil at the laboratory scale is revealed using ground-penetrating radar and gas traps. Journal of Geophysical Research-Biogeosciences, 122,doi: 10.1002/2016JG003714.
Comas, X.; Terry, N.; Hribljan, J.; Lilleskov, E. A.; Suarez, E.; Chimney, R. A.; and Kolka, R. K. 2017. Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground-penetrating radar (GPR). Journal of Geophysical Research-Biogeosciences, 122, doi:10.1002/2016JG003550.
Fabregat, I., Gutierrez, F., Roqué, C., Comas, X., Zarroca, M., Carbonel Portero, D., Guerrero, J., and Linares, R. 2017. Reconstructing the internal structure and long-term evolution of hazardous sinkholes combining trenching, electrical resistivity imaging (ERI) and ground-penetrating radar (GPR). Geomorphology, 285, 287–304.
Wright*, W., and X. Comas. 2016. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods, Journal of Geophysical Research: Biogeosciences, 121(4), 2015JG003246.
Orlando, J., X. Comas, S. A. Hynek, H. L. Buss, and S. L. Brantley, 2016. The architecture of the deep critical zone in the Río Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico) inferred from drilling and ground-penetrating radar (GPR), Earth Surface Processes and Landforms. 41(13), 1826-1840, doi: 10.1002/esp.3948.
Terry*, N., L. Slater, X. Comas, A. S. Reeve, K. V. R. Schäfer, and Z. Yu, 2016. Free phase gas processes in a northern peatland inferred from autonomous field-scale resistivity imaging, Water Resources Research., 52, 2996–3018, doi:10.1002/2015WR018111.
Pellicer, M., X., Corella, J. P., Gutiérrez, F., Roqué, C., Linares, R., Carbonel, D., Zarroca, M., Guerrero, J., Comas, X. 2016. Sedimentological and paleohydrological characterization of Late Pleistocene and Holocene tufa mound paleolakes using trenching methods in the Spanish Pyrenees. Sedimentology. 63: 1786-1819. doi: 10.1111/sed.12290.
Ramirez, J. A., Baird, A. J., Coulthard, T. J. The effect of pore pressure on ebullition from peat, J. Geophys. Res. Biogeosci., 121, doi:10.1002/2015JG003289.
Ramirez, J. A., Lichter, M., Coulthard, T. J., Skinner, C. Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Nat Hazards (2016) 82:571–590, doi 10.1007/s11069-016-2198-z.
Comas X., Terry N., Slater L., Warren M., Kolka R., Kristijono A., Sudiana N., Nurjaman D., and Darusman, T. 2015. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences, 11, 1-39, doi:10.5194/bgd-11-1-2014.
Mount*, G., Comas, X., Wright*, W., and McClellan*, M. 2015. Delineation of macroporous zones in the unsaturated portion of the Miami Limestone using ground-penetrating radar, Miami Dade County, Florida. Journal of Hydrology, 527, 872-883.
Comas, X. and Wright*, W. 2014. Investigating carbon flux variability in subtropical peat soils of the Everglades using hydrogeophysical methods. Journal of Geophysical Research-Biogeosciences, 119, doi:10.1002/2013JG002601.
Mount*, G. and Comas, X. 2014. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground-penetrating radar measurements at the laboratory scale. Water Resources Research , 50 (10), 7590-7605,doi: 10.1002/2013WR014947.
Mount*, G., Comas, X., and Cunningham, K. 2014. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida. Journal of Hydrology, 515: 223-236.
Yeboah-Forson*, A, Comas, X., and Whitman, D.2014. Integration of electrical resistivity imaging and ground-penetrating radar to investigate solution features in the Biscayne Aquifer. Journal of Hydrology. 515: 129-138.
Pellicer, X., Linares, R., Gutiérrez, F., Comas, X., Roqué, C., Carbonel, D., Zarroca, M., and Rodríguez, A. 2014. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground-penetrating radar and trenching, implications for studies in Mars. Earth and Planetary Science Letters, 388: 197-210.
Bon, C. E., Reeve, A. S., Slater, L., and Comas, X. 2014. Using hydrologic measurements to investigate free phase gas ebullition in a Maine Peatland, USA, Hydrol. Earth Syst. Sci ., 18, 953-965, doi:10.5194/hess-10-953-2014.
Comas, X., Kettridge, N., Binley, A., Slater, L., Parsekian, A., Baird, A. J., Strack, M., and Waddington, J. M. 2013. The effect of peat structure on the spatial distribution of biogenic gases within bogs. Hydrological Processes, 28 (22), 5483-5494, doi:1002/hyp.10056.
Kettridge, N., Binley, A., Comas X., Cassidy, N., Baird, A., Harris, A., van der Kruk, J., Strack, M., Milner, A., Waddington, J. M. 2012. Do peatland microforms move through time? Examining the developmental history of a patterned peatland using ground penetrating radar. Journal of Geophysical Research-Biogeosciences, 117, G03030, doi:10.1029/2011JG001876.
Comas, X. and Wright*,W. 2012. Heterogeneity of biogenic gas ebullition in subtropical peat soils is revealed using time-lapse cameras, Water Resources Research, 48 , W04601, doi:10.1029/2011WR011654.
Comas, X., Slater, L., and Reeve, A. Atmospheric Pressure Drives Changes in the Vertical Distribution of Biogenic Free-Phase Gasses in a Northern Peatland. Journal of Geophysical Research-Biogeosciences, 116, G04014, doi:10.1029/2011JG001701.
Parsekian*, A., Comas, X., Slater, L., and Glaser, P. 2011. Geophysical evidence for the lateral distribution of free-phase gas at the peat basin scale in a large northern peatland. Journal of Geophysical Research-Biogeosciences, 116, G03008, doi:10.1029/2010JG001543.
Comas, X., Slater, L., and Reeve, A. Pool patterning in a northern peatland: geophysical evidence for the role of postglacial landforms. Journal of Hydrology, 399 (3-4): 173-184.
Parsekian*, A., Slater, L., Comas, X. and Glaser, P., 2010. Variations in free‐phase gases in peat landforms determined by ground‐penetrating radar, Journal of Geophysical Research -Biogeosciences, 115, G02002, doi:10.1029/2009JG001086.
Kettridge, N., Comas, X., Baird, A., Slater, L., Strack, M., Thompson, D., Jol, H., and Binley A. 2008. Ecohydrologically-important subsurface structures in peatlands are revealed by Ground-Penetrating Radar and resistivity measurements. Journal of Geophysical Research-Biogeosciences, 113, G04030, doi:10.1029/2008JG000787.
Comas, X., Slater L., and Reeve A. 2008. Seasonal geophysical monitoring of biogenic gases in a northern peatland: Implications for temporal and spatial variability in free phase gas production rates, Journal of Geophysical Research-Biogeosciences, 113, G01012, doi:10.1029/2007JG000575.
Slater, L., Comas, X., Ntarlagiannis, D. and Roy Moulik, M., 2007. Resistivity-based monitoring of biogenic gasses in peat soils. Water Resources Research, 43, W10430, doi:10.1029/2007WR006090.
Comas, X. and Slater, L. 2007. Evolution of biogenic gasses in peat blocks inferred from non-invasive dielectric permittivity measurements. Water Resources Research, 43, W05424, doi: 10.1029/2006WR005562.
Comas, X., Slater, L., and Reeve, A., 2007. In situ monitoring of ebullition from a peatland using ground penetrating radar (GPR). Geophysical Research Letters, 34 (6), L06402, doi: 10.1029/2006GL029014.
Comas, X., Slater, L and Reeve, A., 2005. Geophysical and hydrological evaluation of two bog complexes in a Northern Peatland: Implications for the distribution of biogenic gasses at the basin scale. Global Biogeochemical Cycles, 19, GB4023, doi: 10.1029/2005GB002582.
Comas, X., Slater, L. and Reeve, A., 2005. Stratigraphic controls on pool formation in a domed bog inferred from ground penetrating radar (GPR). Journal of Hydrology, 315 (1-4), 40-51.
Comas, X., Slater, L and Reeve, A., 2005. Spatial variability in biogenic gas accumulations in peat soils is revealed by ground penetrating radar (GPR). Geophysical Research Letters, 32 (8), L08401, doi: 10.1029/2004GL022297.
Comas, X. and Slater, L., Low-frequency electrical properties of peat. Water Resources Research, 40 (12), W12414, doi: 10.1029/2004WR003534.
Comas, X., Slater, L. and Reeve, A., 2004. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a northern peatland. Journal of Hydrology, 295, 173-184.
Book chapters:
Comas, X. 2016. Peat, in Encyclopedia of Estuaries, edited by M. J. Kennish, pp. 476-480, Springer Netherlands, Dordrecht.
Comas, X. and Slater, L, 2009, Non-Invasive Field-Scale Characterization of Gaseous-Phase Methane Dynamics in Peatlands Using the Ground Penetrating Radar (GPR) Method: In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), 159-172.
Reeve, A, Comas, X. and Slater, L., 2009, The influence of permeable mineral lenses on peatland hydrology In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), 289-298.
Baird, A., Comas, X., Slater, L. Belyea, L. and Reeve, A.S., 2009, Understanding Carbon Cycling in Northern Peatlands: Recent Developments and Future Prospects, In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), p 1-4.
Slater L., and Comas, X., 2009. The contribution of GPR to water resources research. Chapter 7 of Ground Penetrating Radar: Theory and Applications , Edited by H. Jol, Elsevier, 544 pp..